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In the cmplex energy plane, the pure C o u l d  T matrix possesses I 

I 

branch points which would not appear i f  the force were properly de- 

fined. 

matrix i n  the l imi t  as the screening radius R tends t o  in f in i ty .  I 

l 

This i s  demonstrated by a study of the screened Coulomb T 

No branch points develop i f  the proper order of l imit ing processes 

i s  observed and the  r e su l t s  agree with previous calculations; however, 

the T matrix i s  discontinuous i n  the l i m i t .  A formula for the screened 

Coulomb T matrix i s  given which i s  va l id  t o  order 1 /R  for all energies. 

I. INTRODUCTION 

I 

\ i  
The T matrix fo r  a system undergoing scat ter ing i s  given by 

V. 1 
E + i E - K - V  T = V + V  

Here K i s  the Hamiltonian fo r  the system i n  t h e  absence of interaction, and 

V The t o t a l  energy of the i s  the interact ion giving r i s e  t o  the scat ter ing.  

syskm i s  denoted by E; the  s m a l l  imaginary term i a  Serves t o  make the 

Green * s function 



c 2 

well defined. 

We sha l l  consider the T matrix i n  the momentum representation, with ma- 

t r i x  elements denoted by (k T kl). It i s  convenient t o  introduce a complex 21 lN  

wave nlxmber k, which is related t o  the total  energy by 

3 
'h' k2 E + k  = am 

thus the energy dependence of the T matrix may be indicated expl ic i t ly  by 

(k21T(k) b), or simply T(k) e 

MI 

For most quantum mechanical systems, the T matrix cannot be given i n  

closed form. 

te rac t ion  has been studied extensively, and recently Hostler and others' derived 

in tegra l  representations fo r  the Coularib Green's function which reduce t o  hyper- 

geometric functions. 

However, the  case of a two-part ic le  system with pure Coulomb in-  

From these the  Coulonib T matrix can be obtained d i rec t ly .  

The resul t ing expression for  T(k ) ,  however, has the drawback tha t  it does 

2 not approach a well-defined l i m i t  as k2 -+ kl or k2 -+ k;, and indeed has 

branch points there .  This behavior is  certaillly not correct, for one can show 

on very general grounds tha t  the  only s ingular i t ies  of T(k) should be a branch 

point at k = 0 and simple poles on the imaginary k-axis corresponding t o  the 

bound state energies of K f V .  

2 The correct form of the  T matrix when k2 = kl i s  given i n  Ref. 2, where a 

similar a.noma2.y i n  the l imit ing process Ik -+ k w a s  studied. The d i f f i cu l ty  

there  was traced back t o  the long-range nature of the Coulomb force and disap- 

peared when the e f fec ts  of shielding were introduced. 

& I  Id1 

I n  the  present case the unphysical branch points are also due t o  neglect 

of shielding e f fec ts .  The sca3tering of charged par t ic les  i s  caused by an in-  
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t e rac t ion  which i s  always screened at  very large distances; t he  T matrix may 

therefore properly be regarded as  depending on two parameters, E 

screening radius R .  To f ind  the  value of T(k,R) f o r  real  k, one must take 

E -+ 0 followed by R -+ m. Usuallly, the ordering is  unimportant, but the  

and the  - 

branch points at kl 2 and k$ occur i n  Hostler's expression because the  l i m i t  

R + m has been ( implici t ly)  taken first.  

The present work i s  intended t o  c la r i fy  the  s i tua t ion  by studying the  

behavior of the  screened Coulmb T matrix i n  the l i m i t  R -+ C Q .  I n  Sec. I1 

the formalism i s  established and applied t o  the  cutoff Coulordb potent ia l .  This 

interact ion i s  chosen because it allows one t o  determine unambiguously the  ef- 

fec ts  caused by extending the potent ia l  past  the  cutoff radius. I n  See. I11 

these e f fec ts  are  isolated,  and a general expression fo r  the  screened Coulomb T 

matrix i s  derived, which i s  v d i d  t o  order 1/R for  all k. 

I n  Sec. IV the  limits E 0 and R + a are  taken. W e  f ind that branch 

points at  k: and k; do not appear if  the proper order of limits is  used; fur- 

thermore, the resul t ing T matrix agrees w i t h  t h a t  obtained i n  R e f .  2. For other 

values of k, the screened and pure Coulomb T matrices are  ident ica l  i n  the  

limit R + 0 0 .  Hence, the order of l imiting processes i s  unimportant except i n  

the v i c i n i t y  of k2 = k: and k2 = k$ o r  when 151 = b21. (The last case 

requires special  treatment and w i l l  not be considered here; i n  the  following 

sections it i s  assumed tha t  

Coulonib T matrix are  due t o  that part  of the potent ia l  beyond the screening 

k 1 # 15 1 .) The branch points i n  the pure Id 

radius R;  Sec. V t r e a t s  the e f fec ts  of this par t  of the potent ia l  on the plane 

wave past of the  pure C o u l d  wave function. 
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11. SCREENED COULOMB T MATRIX 

We begin by making an expas ion  i n  Legendre polynomials of the T matrix 

f o r  an a rb i t ra ry  central  potent ia l  V ( r ) :  

The coefficients (k2 IT1 Ikl) 3 axe given by 

A h  

<k, w I Tlkl> y(p 4 ( r=  4 -  k,) (4) 

- 1  

and may be obtained by using Eq. (1) i f  the Green’s f’unction i s  known. 

accomplished by making an expansion of the coordinate representation of the  

Green’s function: 

This i s  

After the  angular integrations are carried out, we have 

where 

and 

r- 
oo 
c 

with W ( r )  = (2m/n2)V(r). 

To obtain the p a r t i a l  wave Green’s function (r[GZIr’)7 we write the  oper- 

a tor  equation (E f i e  - K - V ) G  = 1 i n  the coordinate representation, which 
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leads t o  

The solution t o  this equation i s  eas i ly  shown t o  be 

where r< is  the  smaller axxi r> the larger of r,r’, and where F2 and 

are  the r e g u l a  and irregular solutions of 

having the asymptotic forms 

5 ~ )  - cas[ kr - i v ( l + i )  + 41, 

With this normalization the  Wronskian of F2 and H2 i s  equal t o  i k .  

W e  now apply these formulas t o  the  cutoff Coulomb potential  

v, /r r <  R 

0 r > R  

The solutions of Eq. (11) must i n  this case be proportional t o  pure Coulomb 

functions fo r  r < R,  and t o  free-particle f’unctions for  r > R .  The Coulonib 

functions a r e  normalized so tha t  t h e i r  Wronskian i s  equal t o  

pa r t i c l e  f’unctions are so chosen tha t  the asymptotic forms of Eq. ( 1 2 )  are ob- 

i k ,  and the  free- 
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tained for large r: 

r c  R 

r > R .  

t <  R 

r >  R 

Here hl') and hi2)  are  spherical  Hankel f'unctions; the  pure Coulomb f'unc- 

t ions  Fi and H; may be written* 

where 

and '7 = mVo/fi2k. The quantit ies N2 and €i2 

arithmic derivatives of F2 at r = R, but t o  first order i n  1/R this i s  

equivalent t o  matching amplitudes and phases; accordingly, 

are determined by equating log- 

N,- 1 ,  s , Ik)  - 5 - 1. aln ( a k R ) .  (20) 
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vhere 

( 2 5 )  

(26) 

Tne i i iff iclfi ty wL%k t'ce foregckg analysls i s  that it leaas t o  expresslons 

53 coxi$Lczted the% the sxraal,ion over 2 cannot be c a r L e 2  out in closed f o r m  
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Since i n  practice the  screening radius i s  always very large,  one i s  tempted t o  

take the limit R + 

T h i s  approach is  successful, but care m u s t  be taken when k --+ k: or k2 -* k$ 

i n  the hope tha t  tne resul t ing ser ies  can be summed. 

2 

because the  l imit ing process i s  nonuniform. 

We begin by rewriting mz i n  the form 

which i s  possible i f  uz m d  vz axe given some suitable def ini t ion fo r  

r > R .  For the  present purpose it is convenient t o  require t h a t  uz and vz 

have the - same functional - form for  r > R as fo r  r < R; i . e . ,  uz and vz are 

proportional t o  pure Cozlomb functions times spherical Bessel functions fo r  - all 

r .  

write fo r  the  pure C0710mb5  I’ matrix, and t o  emphasize this we write 

With this definit ion,  t.he first term i n  Eq. (27)  i s  jus t  w h a t  one would 

where 

R 

and 
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The t h i r d  term i n  Eq. (27) has been dropped because, as shown i n  Appendix A; 

it i s  @l/R) fo r  all cases cozlsidered here. 6 

Generally speaking, the second term i n  Eq. (27) may also be neglected. To 

see this, consider the asymptotic forms of u2 and v2, 

From Eq. (32) it follows, on integration by par%, t h a t  

F r o m  Ea_. (31) oae can show tha t  

i s  a bomded function of r for  I" < R, E -+ m; consequently, the quantity 

ei%,(E)/(2kR)iq has no worse than a logarithmic s ingular i ty  as F. --* a, 

and therefore 

- 
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Equation (28)  shows that mZ(R) i s  given by i ts  unscreened value mz(m) 

except when contributions t o  the lat ter from lasge r are  important,, and 

these occur only when k2 + k?. 

the  c r i t i c a l  condition becaning k2 -+ kg. Since BZ(R) = B2(w) + f l l / R ) ,  we 

may write 

Similm conclusions may be drawn for &(R), 

or, a f t e r  the summation over 2 has been performed, 

Now l e t  us attempt t o  obtain a resu l t  more general than Eq. (36) .  This 

requires that we extract  from tbe  neglected terms and r e t a in  those par t s  which 

a re  important when (k2 - kf)R --* 0 or  (k2 - k$)R -+ 0. 

quantity U2V2 mist be examined i n  greater de t a i l .  

For this purpose the  

We s h a l l  begir, with V2,  wMch i s  given asymptotically by 
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-e of integration yields 

where 

The asymptotic form of f (x )  i s  easi ly  found t o  be -peix/x 

values of x approaching zero, the  relat ion 

. L% ;'1 
l? e s ( i , \ - i q ; - i % )  = $(-iq9 ~ - i q  ;i%)-(-i%) r( 

yields  

When applied t o  f[(k - kl) R], Eq. (41) gives 

while fo r  

-w (40) 

where 
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r e su l t  for  f exactly the  same, except t h a t  the  

neglected terms are,  of - Ccanbining these resu l t s ,  we 

have fo r  the  behavior of 

i k R  r I 1 

Before proceeding, l e t  us note that t o  q l / R )  the  product U2V2 can be I 

written i n  the form 

where A and B are  yet t o  be determined. We shal l ,  i n  f ac t ,  be able t o  give 

exact expressions for  A and B, val id  fo r  all k .  However, since f((k - kl)R] 

i s  already @l/R) except when k -+ kl, an exact expression fo r  A i s  r ea l ly  

l 

necessary only i n  the v i c in i ty  of k = kl. Similarly, an exact expression for  

, 

B i s  really necessary only i n  the v ic in i ty  of k = -kl. For this reason 

we shall immediately put k/kl = L 1 i n  Eq. (38) and write I 

niext we demonstrate that 
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i . e . ,  Uz 

kl is  complex and equal t o  k.  The proof begins with the observation t h a t  

Eqs. (6) t o  (8) may a lso  be writ ten as follows: 

is  proportional t o  (kZ ITZ(k,R) Ikl) fo r  the special  case where 

and kl has been se t  equal t o  k. 

Equation (48) i s  almost ident icd.  t o  one of the well-known in tegra l  

equations for  the radial wave function F Z ( r ) ;  it d i f f e r s  i n  that the  wave 

numbers i n  

f --* 0. 

however, and, as shown i n  Appendix B, the r e su l t  i s  w h a t  one might naively ex- 

pect : 

jl(kr) and GZ(k) are exactly equal instead of equal i n  the l i m i t  

This circumstance makes the integrand i n  Eq. (48) a perfect derivative, 

Equations (47) arid (49) t b e i  lead d i rec t ly  t o  the desired expression for 

UZ(R) - 
A s  mentioned &me,  i n  order t o  determine U2Vz t o  f l l / R ) ,  the  coeffi-  

c ient  of f [(k - kl)R wst be known exactly only when k = kl; therefore,  3 



I n  l i k e  manner we m a y  write 

2 (The f ac t  t h a t  

Eq. (51.) F'rorr; Eqs. (45), ( S O ) ,  ard (51) it follows tha t  

jx(-x) = (-1) j , (x)  i s  used t o  obtain the  f i n a l  form of 

w 

TLe expression fo r  mL(Fi) i s  similar, t A  w i t h  kl and k2 interchanged. 

Vsing t h e  symmetry praperc,j. 
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and i t s  consequence 

which can be readily established f’ram Eqs. ( 7 )  and (81, we may give a gen- 

e r a l  expression for  the screened CouloIllb ? natr ix ,  correct t o  

va l id  fo r  all k: 

@(l/R) and 

W.  LIMETIC* CASES 

To conplete the ssudy of the screexed Coxlorrib T matrix, we sha l l  need 

closed-form expressior-s for  the I matrises tha t  zppear on the  r ight  side of 

Eq. (55) 

-Le obtained froni Sos t l c r i s  work and writ tec as follows: 

The f i r s t  i s  tF-5 pure CoLxLb T matrix with complex k, which may 
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where 

The ig tegra l  I(x) may be evahiated by changing t o  

s - I  t =  S t l  

as tl;e vasiable of irkegration, with the r e su l t  

Considered as a fbnction of k, I(x)  has simple poles at 

2 2 i l l  = -r,(n = 1,2,3. LI .) and brazen points at x = 1 and x = m. These l a t t e r  

points correspond t o  The behavior of 

1:x) as 

2 2 2  2 2  k = kl, k = k2, k = 0, and k2 = 0 3 .  

x + 1 may be detemined by maly-tic: continhation of the  hy-pergeomet- 

r i c  s e r i e s  and i s  givenby 
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2 Applying this specif ical ly  t a  the case k2 --* kl, we can write 

where 

Next we consider tine screened Coulomb T matrices appearing i n  Eq. (55). 

All these can be obtained i n  closed form from the basic resu l t  of Ref. 2, 

Although Eq. (63) w a s  or iginal ly  derived with tke assumption t h a t  k = kl, it 

also holdk for  k =  -%. 
T(E + ic)*, i f  V a d  IC are  real. Froa this, i n  the l i m i t  E + 0, 

T9 show this, w e  cote fromEq. (1) T(E  - i e )  = 

2 2  

2 2  k = k2. 

Eq. (63) s a t i s f i e s  t.his re la t ion  and therefore holds f o r  B = kl- The sym- 

metry property (54)  nay be med t 3  obC,ain +,he r e su l t  fo r  

We ca.rA zlow see expiicizly how t h e  screened Co-aomb T matrix behaves as 

R + m .  If k i s  complex, or i s  real but not equal t o  ul;, or kk2, all the 

f functions i n  Eq. (55) are H l / R ) ,  and therefore 
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But when k approaches one of the  c r i t i c a l  values, say kl, Eq. (55) 

reduces t o  

The T matrix is thus represented by a combination of two terms, one correct 

f o r  

dominates is determined by f [(k - kl)R]. If R + m f a s t e r  than k -* kl, 

the first term dcanirsates, and we are led again t o  Eq. (64) .  

viously, however, the limit R -*m i s  actually a convenience and should be 

performed last, wkdch corresponds t o  (k - kl)R -+ 0. Comparing Eq. (44b) t o  

the T matrices as given i n  Eqs. (61) and (63) reveals t h a t  i n  this s i tua t ion  

a cancellation takes place and yields  

R = m, k # kl, and the other correct for  k = kl, R < m i  which term 

c 

As discussed pre- 
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I n  the general case, where (k - kl)R approaches sane fixed value as 

R --+ 0 0 ,  use of Eq. (40)’ leads t o  

Obviously, similar resu l t s  are obtained when k approaches any of the other 

c r i t i c a l  values 

We may summasize our findings as follows: Generally, it makes no d i f -  

ference when the l imi t  

Coulomb T matrix; the resu l t  i s  ident ical  t o  the pure Coulomb T matrix and 

does not depend 03 R. 

R + r n  is  taken i n  the expression f o r  the screened 

The exception t o  this generalization occurs when 

-2 k2 approaches kf or k2. In  this case the screened Coulonib T matrix 

admits of an asymptotic 

behaved function of k 

t o r  e 0. I n  contrast i6 

expansion, the  leading term of which is  a w e l l -  

and depends on R through the logarithmic phase fac- 

the pure Co~LLonib T matrix has branch points at  

k: and kg, i n  addition t o  being independent of R .  

N e a r  these c r i t i c a l  points, the difference between the pure a d  screened 

Coulomb T matrices i s  due t o  contributions t o  the l a t t e r  fram r ’  > R.  These 

contributions do not affect  the angular dependence of the T matrix, but only 

i t s  zwgr!!t.iide and phase. The effect  on the magnitude is  such as t o  make the 

T matrix discontinuous i n  the l imi t  R --+ co. W s  effec t  i s  s t r ik ingly  dis-  

played when k i s  on the real axis; nem kl, fo r  instance, we have 
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where 

I 

V. WAVE F[MCTIONS 

2 A remarkable finding of the preceding section i s  t h a t  when k approaches 

or kg, the en t i r e  contribution t o  the pure Coulonib T matrix comes from 

large values of r'. More precisely, the contribution f r o m  r '  > R consists 

of two parts ident ical  except i n  normalization, one of which exactly cancels 

t he  contribution from r '  < R .  When screening is  introduced, the cancel- 

l a t i o n  i s  prevented. 

i s  responsible for  the well-known dis tor t ion of the  incident plane wave i n  a 

pure Coulordb f i e l d .  

It i s  perhaps worth noting that  this same phenomenon 

To see this, consider the wave operator 6d(k), which i s  related t o  the  

Green's function by the equation 

Suppose that Q(k)  operates on a plane wave of marientiiiii 

A p a r t i a l  wave expansion yields  

%I, ~ 5 t h  Ir_ f Iki I* 1 .  I 

where 
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(The radial function R z ( r )  i s  generally different fran Jrz(r) of See. IV, 

because the  wave numbers i n  jz(klr) and GZ(k) are different . )  By making 

use of quantit ies defined i n  previous sections, we may develop the following 

exact expression for  

where r< is  the smaller of r and R .  (We have writ ten Uz(r<,kl) t o  

indicate expl ic i t ly  that kl i s  involved, not % as before.) 

Now l e t  us determine the asymptotic form of R z ( r ) .  Since k2 # g, 
we have Vz(r) = e*d(l/r) as before. Thus, i f  we suppose r< t o  be large 

enough t h a t  Nz - 1, 
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This equation may be inserted in to  Eq. (70) and the summation over 2 per- 

formed, which yields  

where E kr/r. The "scattering amplitude" -(klT(k,r<) b) depends only 
m 

weakly on r<, through alogaxithmic phase factor  e -iT1n( 2kr<) ; the plane 

i k  -r wave e dAkr is  unaffected. 

Although Eq. (74) has been derived assuming a cutoff Coulornb potential  

for  W ( r ) ,  this r e s t r i c t ion  is  not necessary. 

s e t  R = m, and proceed as before; now the only reference t o  a cutoff poten- 

t ial  i s  t o  i d e n t i e  U2(r,kl) as proportional t o  (klTZ(k,r)lkl). 

conclude t h a t  even i n  a pure Coulomb f ie ld ,  the incident plane wave i s  un- 

d is tor ted  i f  k2 # k;. 

However, i f  k + kl, the  r e su l t  depends c r i t i c d l y  on when the l i m i t  

We can return t o  Eq. ( 7 2 ) ,  

Thus w e  

2 2  

R + i s  taken. Equation (74) i s  st i l l  val id  when k2 = kf provided t h a t  

r > - R ,  i .e., the l imi t  R + i s  taken last. Here the  factor  V 2 ( r < )  - V 2 ( R )  

i n  Eq. (72) prevents any cancellation due t o  contributions from r' > R .  But 

if tiie ;-at E + m i s  taken first, the term FZ(r)V2(r) survives and becames 

important as k2 + kf.  

rearrangement we f ind tha t  

Now cancellation does take place, and after sane 
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or 

where 111; (9 i s  the pure Coulonib wave f ~ n c t i o n . ~  As i s  w e l l  known, 111; i s  
ad NJ- 

given asymptotically by a scattered wave plus a dis tor ted plane wave. We 

also note f im Eq. (76)  t ha t  Sl(k)cq, 

l w g e  

does not have un i t  amplitude f o r  
4 

r, a f a c t  first pointed out by Mapleton.8 Both these features 
2 which appear as k2 --+ k l ,  the plane wave d is tor t ion  and the  amplitude renor- 

malization, are  due t o  (unphysical) contributions fram r’ > R .  
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APPENDIX A - ORDER OF MAGNITUDE OF 

I n  the  text, the  th i rd  term i n  Eq. ( 2 7 ) ,  which may be writ ten 

w a s  neglected on the  premise tha t  it i s  always e '< l /R)  f o r  cases of in te r -  

e s t .  

the in tegra l  may be decomposed in to  four integrals  of the  type 

To prove this, w e  first observe that (using the  asymptotic form of u z )  

where A and v take on the values v(k 2 k2) and 21, respectively. 

Frm Eq. (33) for  

unless k2 + kf; therefore 

V z ( r ) ,  we see immediately t h a t  eihVz(r)/rivv = d(l/r) 

To derive an expression val id  when k2 --+ e, we integrate (A21 b.; p z ~ - ! ~  and 

obtain 



- .  r b  . 
26 

since dV2/dr = -vz . 
of k, eihVz(r)/rivv i s  bounded a,nd eihrvz(r)/rivq i s  d(l/r) as r + m .  

Consequently, (A4)  i s  g ( l /hR) ,  which leads t o  

From Eqs. (38) - (41) we can show that, for a l l  values 

Eqs .  ( A 3 )  and (A5) indicate that the integral  i s  negligible unless kf = k:, 

which i s  excluded fram the present discussion. 
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APPENDIX B - EVALUATION OF (kr) 

I n  Eq. (48) we encounter the integral  

which may be writ ten expl ic i t ly  as 

r 

where Tz(r) krjZ(kr). Recalling that Fz ( r )  and H Z ( r )  are both solu- 

t ions  of 

[-& + k 2 -  q$ - W(r)] f,W = 0, 

and observing t h a t  T(r) s a t i s f i e s  a similar equation but with W ( r )  = 0, 

we can readi ly  ver i fy  that 

where W ( c , f 2 )  i s  the W r o n s k i a n  of and f 2 .  Therefore, 

and a f t e r  same rearrangement, 
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Since both F2 and 

zero. The Wronskian of Fz and HI i s  equal t o  ik, and Frm Eq. ( 1 2 )  one 

can establ ish tha t  as kr  -+ m ,  

vanish as (kr)’+l when kr -+ 0, the last term i s  

For the cutoff Coulomb potential ,  the  upper l i m i t  fo r  the in tegra l  P should 

actual ly  be r’ = R ,  and thus f i n a l l y  

This equation leads immediately t o  the resu l t  given i n  Eq. (49 ) .  
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